Formation of Galactic Center Magnetic Loops

نویسندگان

  • Mami Machida
  • Ryoji Matsumoto
  • Satoshi Nozawa
  • Kunio Takahashi
  • Yasuo Fukui
  • Natsuko Kudo
  • Kazufumi Torii
  • Hiroaki Yamamoto
  • Motosuji Fujishita
  • Kohji Tomisaka
چکیده

A survey for the molecular clouds in the Galaxy with NANTEN mm telescope has discovered molecular loops in the Galactic center region. The loops show monotonic gradients of the line of sight velocity along the loops and the large velocity dispersions towards their foot points. It is suggested that these loops are explained in terms of the buoyant rise of magnetic loops due to the Parker instability. We have carried out global three-dimensional magneto-hydrodynamic simulations of the gas disk in the Galactic center. The gravitational potential is approximated by the axisymmetric potential proposed by Miyamoto & Nagai (1975). At the initial state, we assume a warm (∼ 10K) gas torus threaded by azimuthal magnetic fields. Self-gravity and radiative cooling of the gas are ignored. We found that buoyantly rising magnetic loops are formed above the differentially rotating, magnetically turbulent disk. By analyzing the results of global MHD simulations, we have identified individual loops, about 180 in the upper half of the disk, and studied their statistical properties such as their length, width, height, and velocity distributions along the loops. Typical length and height of a loop are 1kpc and 200pc, respectively. The line of sight velocity changes linearly along a loop and shows large dispersions around the foot-points. 1 Numerical results indicate that loops emerge preferentially from the region where magnetic pressure is large. We argue that these properties are consistent with those of the molecular loops discovered by NANTEN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Similarity between the Molecular Loops in the Galactic Center and the Solar Chromospheric Arch Filaments

We carried out two-dimensional magnetohydrodynamic simulations of the Galactic gas disk to show that the dense loop-like structures discovered by the Galactic center molecular cloud survey by NANTEN 4 m telescope can be formed by the buoyant rise of magnetic loops due to the Parker instability. At the initial state, we assumed a gravitationally stratified disk consisting of the cool layer (T ∼ ...

متن کامل

Magnetic Properties of Cobalt Ferrite synthesized by Hydrothermal and Co-precipitation Methods: A Comparative Study

The magnetic properties of calcined cobalt ferrite formed by nano-crystalline powders have been compared by two different methods (co-precipitation and hydrothermal). The structural properties of the produced powders were investigated by X-ray Diffraction (XRD), scanning electron microscopy (SEM). The results show that the formation of cobalt ferrite spinel structures is effected by changing me...

متن کامل

The effect of variation of stellar dispersion velocities by the galactic latitude in interpreting gravitational microlensing observations

Our galaxy is a spiral galaxy and its stars are mostly in a thin disk and rotate around the galactic center. The vertical component of the dispersion velocity of stars is a function of the galactic latitude and decreases with increasing it. In the galactic Besancon model, this dependence is ignored and they just consider the dependence of dispersion velocity on the stellar age. Becanson model i...

متن کامل

Turbulent Origin of the Galactic-Center Magnetic Field: Nonthermal Radio Filaments

A great deal of study has been carried out over the last twenty years on the origin of the magnetic activity in the Galactic center. One of the most popular hypotheses assumes milli-Gauss magnetic field with poloidal geometry, pervading the inner few hundred parsecs of the Galactic-center region. However, there is a growing observational evidence for the large-scale distribution of a much weake...

متن کامل

Clustering of Superstring Loops

Superstring loops formed by intercommutation of low tension horizoncrossing superstrings may be captured and accreted by growing matter perturbations. The paper explores the influence of string tension μ and of the network formation mechanism on the clustering process. Galaxy formation and growth is schematically described by a radial infall model. A fully relativistic treatment of motion in pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000